Ali Test

No.1

A

本题有两种优惠券活动,分别为每满60-5,满299-60.

  • 对250元的耳机而言,如果不凑单,则优惠4×5=20元,实际花费230元

  • 对600元的音箱而言,如果不凑单,则优惠10×5+60=110元,实际花费490元

  • 对于一起购买音箱+耳机,如果不凑单,则优惠14×5+60=130元,实际花费720元

首先,一起分开购买比一起购买划算,因为对于优惠力度更大的299-60,单独购买可能可以使用2次,一起购买只能使用一次。

α\alpha 对于,耳机而言,有:

targetmin(Se)min(S_e)

​ S_e=S_{eo}-\dfrac{S_{eo}}{60}×5-30×sign(S_{eo}-299)-30

S.t.Seo250S_{eo}\ge250

  • when Seo[240,299)S_{eo}\in[240,299),Se=Seo20S_e=S_{eo}-20,故在Seo=250S_{eo}=250时取到最小值Se=230S_e=230
  • when Seo[299,299]S_{eo}\in[299,299],Se=Seo80S_e=S_{eo}-80,故在Seo=299S_{eo}=299时取到最小值Se=219S_e=219
  • when Seo[300,+]S_{eo}\in[300,+\infty],S_e=S_{eo}-\dfrac{S_{eo}}{60}×5-60=\dfrac{11S_{eo}}{12}-60故在Seo=300S_{eo}=300时取到最小值Se=215S_e=215

且当故在Seo=300S_{eo}=300时取到最小值Se=215S_e=215

β\beta 同理,对音箱而言,有:

targetmin(Sv)min(S_v)

​ S_v=S_{vo}-\dfrac{S_{vo}}{60}×5-60

S.t. $S_{vo}\ge600 $

when Svo[600,+]S_{vo}\in[600,+\infty],S_v=S_{vo}-\dfrac{S_{vo}}{60}×5-60=\dfrac{11S_{vo}}{12}-60故在Svo=600S_{vo}=600时取到最小值Sv=490S_v=490

综上所述,总花费=215+490=705元

B

B.1

当至少一项比A店优惠

  • 若耳机更优惠,则需要Sbe214S_{be}\le214
    • S_{be}=S_{beo}-x-30×sign(S_{eo}-299)-30
      • when Sbeo[250,299]S_{beo}\in[250,299],Sbe=SbeoxS_{be}=S_{beo}-x,故在Sbeo=250S_{beo}=250时取到最小值Sbe=250xS_{be}=250-x
      • when Sbeo[299,+]S_{beo}\in[299,+\infty],Sbe=Sbeox60S_{be}=S_{beo}-x-60,故在Sbeo=299S_{beo}=299时取到最小值Sbe=239xS_{be}=239-x
    • min(Sbe)=239xmin(S_{be})=239-x, so, x25x\ge25
  • 若音箱更优惠,则需要Sbv489S_{bv} \le 489
    • Sbv=Sbvox60S_{bv}=S_{bvo}-x-60
      • when Sbvo[600,+]S_{bvo}\in[600,+\infty],Sbv=Sbvox60S_{bv}=S_{bvo}-x-60,故在Sbvo=600S_{bvo}=600时取到最小值Sbe540xS_{be}540-x
    • min(Sbv)=540xmin(S_{bv})=540-x, so, x51x\ge51

故,综上所述当 x25x\ge25时,B店至少有一样产品会比A店便宜

B.2

两项合买的总金额比A店便宜

在当前问题中,仍然是分开购买比一起购买优惠

故,根据B.1中分析所得,min(Sbe)=239xmin(S_{be})=239-xmin(Sbv)=540xmin(S_{bv})=540-x

得到min(Sb)=7792xmin(S_{b})=779-2x, so x37.5x\ge37.5

C

C.1

因为计算盈利率,假设p1c1p_1\ge c_1,p2c2p_2\ge c_2

在分析中假定售价p1p_1为定值,则

r_1=P(p_1\le S_1)×(p_1-c_1)=\dfrac{u_1-p_1}{u_1}×(p_1-c_1)

所以当p1=u1+c12p_1^*=\dfrac{u_1+c_1}{2}时利润r1r_1最大为r1=c12+u122c1u14u1r_1^*=\dfrac{c_1^2+u_1^2-2c_1u_1}{4u_1}

同理当p2=u2+c22p_2^*=\dfrac{u_2+c_2}{2}时利润r2r_2最大为r2=c22+u222c2u24u2r_2^*=\dfrac{c_2^2+u_2^2-2c_2u_2}{4u_2}

C.2

因为S1,S2S_1,S_2为独立同分布,则S=S1+S2S=S_1+S_2

故求得SS的概率密度,从而求得r12r_{12}

r_{12}=\begin{equation} \left\{ ​ \begin{array}{} ​ \dfrac{1}{2u_1u_2}(u_1+u_2-p_{12})^2(p_{12}-c_{12}), & max(u_1, u_2)\le p_{12} \le u_1+u_2 \\ ​ \dfrac{2u_1u_2-p_{12}^2+(p_{12}-min(u_1, u_2))^2}{2u_1u_2}(p_{12}-c_{12}), & min(u_1, u_2) \le p_{12}\le max(u_1, u_2)\\ ​ \dfrac{2u_1u_2-p_{12}^2}{2u_1u_2}(p_{12}-c_{12}), & c_{12}\le p_{12}\le min(u_1, u_2)\\ ​ \end{array} \right. \end{equation}

则r_{12}’=\begin{equation} \left\{ ​ \begin{array}{} ​ k_1(p_{12}-(u_1+u_2))(3p_{12}-(2c_{12}+u_1+u_2)), & max(u_1, u_2)\le p_{12} \le u_1+u_2 \\ ​ k_2(-4p_{12}+2c_{12}+2max(u_1, u_2)+min(u_1,u_2)), & min(u_1, u_2) \le p_{12}\le max(u_1, u_2)\\ ​ k_3(-3p_{12}^2+2p_{12}c_{12}+2u_1u_2), & c_{12} \le p_{12}\le min(u_1, u_2)\\ ​ \end{array} \right. \end{equation}

可以看出函数r12r_{12}呈现w形趋势,故在2c12+2max(u1,u2)+min(u1,u2)4,2c12+u1+u23\dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4},\dfrac{2c_{12}+u_1+u_2}{3}两处可能取到最大值

因为u1,u2u_1, u_2地位相同,不妨设u1<u2u_1<u_2

  • when p12=2c12+2max(u1,u2)+min(u1,u2)4p_{12} = \dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4}, r12=1+(u12c12)24u2216u2r_{12} = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2}
  • when p12=2c12+u1+u23p_{12} = \dfrac{2c_{12}+u_1+u_2}{3}, r12=2(u1+u2c12)327u1u2r_{12} = \dfrac{2(u_1+u_2-c_{12})^3}{27u_1u_2}

得到p12=2c12+2max(u1,u2)+min(u1,u2)4p_{12}^* = \dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4}, r12=1+(u12c12)24u2216u2r_{12}^* = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2}

C.3

rtotal=r1+r2=c12+u122c1u14u1+c22+u222c2u24u2r_{total}= r_1^*+r_2^*=\dfrac{c_1^2+u_1^2-2c_1u_1}{4u_1} + \dfrac{c_2^2+u_2^2-2c_2u_2}{4u_2}

r12=1+(u12c12)24u2216u2r_{12}^* = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2}

单卖和捆绑销售 利润随着u1,u2,c12u_1,u_2,c_{12}等发生改变

NO.2

A

累计访问量: | 昨日访问量: | 昨日爬虫数:
Gunjianpan © 2017 - 2020 Power by VuePress & iofu728/blog